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Abstract

Cardiovascular diseases, particularly atrial fibrillation
(AF), remain a significant global health burden. Despite
advancements in diagnostic and treatment techniques, the
long-term success rates of AF ablation procedures remain
suboptimal. This is primarily due to the complexity of
underlying mechanisms, challenges in accurately identi-
fying arrhythmogenic substrates, and the efficacy heavily
relying on physician interpretation, which contributes to
variability in procedural outcomes. This work addresses
these limitations by leveraging machine learning (ML) for
the classification of persistent AF using multi-lead elec-
trograms (EGMs). We investigate logistic regression with
handcrafted features, as well as convolutional neural net-
works (CNNs) and Long Short-Term Memory (LSTM) net-
works designed to interpret transformed EGMs and cap-
ture temporal dependencies, with the aim of enhancing the
accuracy of identifying regions suitable for ablation. All
three approaches show promise in identifying persistent
AF behavior, even in data-limited settings. These results
highlight the potential of ML to improve diagnostic pre-
cision and support more effective, personalized ablation
strategies for persistent AF.

1. Introduction

AF is the most common sustained cardiac arrhythmia,
affecting millions of people globally and significantly con-
tributing to stroke, heart failure, and other serious compli-
cations [1]. Ablation strategies aim to eliminate arrhyth-
mogenic sources and modify the atrial substrate to prevent
AF recurrence. One common strategy involves pulmonary
vein isolation (PVI), which focuses on eliminating high-
frequency pulmonary vein potentials and creating a bidi-
rectional block to prevent ectopic pulmonary vein activity
from triggering AF [2].

Recent advances in artificial intelligence (AI) and ma-
chine learning (ML) have improved cardiac medicine, par-
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ticularly in managing complex cardiac arrhythmias. These
technologies are increasingly used to enhance diagnostic
accuracy, personalize treatment, and improve procedural
outcomes.

ML models can enhance cardiac ablation by accurately
identifying arrhythmogenic regions. Algorithms detecting
spatio-temporal EGM dispersion have improved success
rates in persistent AF, with tailored strategies achieving
higher one-year freedom from recurrence (88% vs. 70%)
compared to pulmonary vein isolation (PVI) alone, partic-
ularly in long-duration AF [3]. In addition, ML-based pa-
tient stratification, such as uplift modeling, has identified
persistent AF patients benefiting from more extensive ab-
lation (PVI-plus), yielding significantly lower recurrence
than standard PVI [4]. Al has also enhanced diagnostic ca-
pabilities by objectively analyzing complex electrophysio-
logical data. CNNs have achieved high accuracy (95.0%)
in distinguishing rotational activation patterns from in-
tracardiac EGMs when converted to visual image grids
via Hilbert transforms, outperforming traditional statistical
methods or support vector machines [5]. However, classi-
fying ablation targets from multipolar EGMSs remains chal-
lenging. This work proposes a pipeline combining signal
processing, feature engineering, and ML models to address
this gap.

2. Methods

2.1. Real Data Used for Classification

The dataset used for classification comprises electro-
grams from 53 patients with persistent AF, collected using
the PentaRay® multielectrode mapping catheter at Nice
Pasteur University. It extends a previous dataset of 16 pa-
tients [6], now containing over 10,000 pre-ablation sam-
ples. Each sample consists of a 2500 ms window from 10
catheter leads, annotated by physicians during the proce-
dure. Labels distinguish regions relevant for ablation (e.g.,
CFAE, flutter, scar, or normal). In this work, scar tissue
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is excluded, and all non-normal conditions are grouped as
ablation targets, yielding a binary classification problem.
For each sample, if any bipole is labeled as an AF ablation
target, the entire sample is considered AF.

Extensive preprocessing was required to address dupli-
cation artifacts and synchronization issues. In collabora-
tion with physicians and the software provider, only sam-
ples collected between the initial tagging and the start of
ablation were retained, forming the Raw Dataset of 13,888
samples (1,035 ablation targets; 12,853 non ablation tar-
gets) from 53 anonymized patients.

As locations are tagged by the operator while the physi-
cian moves the catheter, the tagged location may not al-
ways represent the exact sample pointed out by the physi-
cian. Although this had no clinical impact, it can affect
model training, as the underlying electrical behavior of the
tagged region may not accurately reflect the intended tar-
get. To address this issue, randomized samples were re-
viewed and reclassified by a physician. This yielded the
Curated Dataset, with 430 samples (112 ablation targets;
318 non ablation targets), providing the most reliable la-
bels. DL models are trained on the larger Raw Dataset,
due to the limited number of samples on the curated ver-
sion. Final evaluation relies on the Curated Dataset.

2.2.  Signal Processing Operations

Transformations are used to extract salient features.
This section describes the transformation techniques ap-
plied. Figure 1 summarizes the pipeline by showcasing
two representative transformation chains. First showing
the raw signal, then the signal after applying the Teager—
Kaiser (TK) operator with decimation and cutoff normal-
ization, and finally the same with squared pulses.

TK operator: This energy-based transformation en-
hances local transients by emphasizing instantaneous en-
ergy, which helps reveal abrupt events in EGMs [7].

Decimation: Decimation is a downsampling technique
that effectively decreases the temporal resolution while
preserving the overall structure and shape of the signal.

Cutoff Normalization: To suppress low-amplitude/no-
contact noise while retaining clinically relevant peak in-
formation, first, we use minimal amplitude and autocorre-
lation thresholds to determine if a lead contains an EGM
signal or pure noise due to a lack of contact between the
catheter and tissue. For leads that pass this first check,
we detect peaks and their boundaries within leads using
thresholds and rescale signal amplitude within each peak
window to [0,1], leaving the inter-peak baseline near zero.
This keeps peak timing, width, and fragmentation while
removing nuisance variability.

Squared Signal: This transformation highlights each
peak while simplifying the signal. Each peak is converted
into a 0/1 pulse whose width equals the peak duration. This

makes the representation less sensitive to absolute ampli-
tude and simplifies downstream modeling. This transfor-
mation is used with normalized TK transformed signals
since it relies on positive signals with a maximum ampli-
tude of 1, where peaks occur.
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Figure 1: Example of Signal Transformations with a) Raw
signal; b) TK + Decimation + Cutoff Normalization; c) TK
+ Decimation + Cutoff Normalization + Squared Signal

2.3. Feature Engineering

Feature engineering is used for simpler models and is
comprised of two primary components: the extraction of
statistical features from each bipolar EGM and pairwise
comparison between neighboring leads.

Statistical Measures: To characterize the signal’s dis-
tribution, central tendency, and variability a group of fea-
tures are used: textcolorredmean, median, mode, standard
deviation, mean absolute deviation, coefficient of varia-
tion, interquartile range, percentiles (5%, 25%, 50%, 75%,
90%, 95%), skewness, kurtosis, jarque-bera statistic, num-
ber of peaks, mean peak distance, and standard deviation
of peak distances.

Seasonal Decomposition: Seasonal decomposition iso-
lates trend, seasonal, and residual components of each
signal using a convolution filter. The seasonal compo-
nent serves as input for calculating dynamic time warping
(DTW) distances and cross-correlation metrics between
leads. DTW provides robust inter-lead distance measures,
while cross-correlation identifies time lags, highlighting
potential AF synchrony or delay patterns.

Pairwise Signal Comparison: All possible pairs
among the ten seasonal components are analyzed to ex-
tract maximum cross-correlation values and corresponding
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lags. Minimum and maximum lag values across pairs are
retained to assess temporal alignment variability. Pairwise
feature differences are computed as normalized percent
differences to emphasize magnitude discrepancies, sup-
porting the detection of AF ablation targets.

Complexity and Recurrence-Based Features: Addi-
tional features are derived using Recurrence Quantifica-
tion Analysis (RQA) and entropy metrics. RQA captures
dynamic patterns via features such as determinism, lami-
narity, recurrence rate, entropy, trapping time, and various
line-based statistics. Entropy features such as shannon en-
tropy, conditional entropy, dispersion, phase entropy, and
slope entropy quantify signal complexity.

2.4. Data Augmentation and Balancing
Techniques

To improve robustness and address class imbalance, the
dataset was expanded through augmentation and balanced
with resampling strategies.

Augmentation: Two data augmentation strategies are
used. Lead rotation reorders the 10-lead EGMs using the
Pentaray catheter’s symmetry, preserving inter-lead rela-
tionships while producing up to 10 distinct spatial config-
urations. Time reversal inverts the temporal sequence of
all leads, improving temporal generalization.

Balancing: Class imbalance is mitigated through over-
sampling and undersampling, guided by a configurable
Class Imbalance Ratio (CIR) ranging from 0.5 (undersam-
pling) to 1.5 (oversampling), enabling flexible rebalancing
strategies.

2.5. Machine Learning Models

Three distinct machine learning model architectures are
investigated for the binary classification: logistic regres-
sion, a CNN, and an LSTM. These models are selected
based on their ability to capture spatiotemporal patterns
and provide interpretable baselines. The CNN and LSTM
models have a small number of parameters due to the lim-
ited amount of samples available.

« Logistic Regression: This model leverages handcrafted
features extracted from EGMs instead of raw signal
data. Its simplicity and interpretability make it a valu-
able approach in clinical settings where understanding the
model’s decision-making process is crucial.

e CNN: This compact CNN architecture processes trans-
formed EGM time-series, progressively reducing tempo-
ral resolution while extracting local spatial patterns. The
model is comprised of two convolutional blocks. The first
block, a 2D convolution with a kernel size of (100 x 2),
stride (2 x 2), and ReLU activation, followed by max pool-
ing, batch normalization, and dropout. The second block

uses a kernel size of (25 x 1) with stride (2 x 1) and other-
wise identical structure. A final dense layer with sigmoid
activation produces the binary classification output.

o LSTM: This recurrent model is designed to capture tem-
poral dependencies in the EGM sequences. The model ap-
plies layer normalization to the input, then employs two
stacked bidirectional LSTM layers, the first with 6 hid-
den units and returning the entire sequence, and the second
with 2 hidden units that outputs only the final state. Both
layers use recurrent dropout. A dense projection layer with
64 units and ReLU activation expands the representation
before applying dropout for regularization. A final dense
layer with sigmoid activation produces the binary classifi-
cation output.

2.6. Training and Evaluation Method

We evaluate with stratified 3-fold cross-validation using
patient-wise exclusive splits to avoid leakage from corre-
lated signals of the same patient. Stratification preserves
AF/non-AF ablation target label proportions in each fold,
ensuring comparable class balance.

Models are evaluated using F1-score as the primary met-
ric. Additionally, accuracy, precision, and recall are also
reported to provide a comprehensive view of the model’s
performance. We implement a comprehensive hyperpa-
rameter search based on the Tree-structured Parzen Es-
timator (TPE) [8]. The search jointly optimized train-
ing hyperparameters such as batch size, learning rate, but
also, class imbalance ratio (CIR), transformation pipeline
choices and chaining, feature-engineering options, data
augmentation strategies, and model architecture variants.
Each configuration was evaluated with the average test F1-
score as the optimization objective.

3. Results

From the hyperparameter search process, two input
pipelines were ultimately considered (Table 1) as they
were associated with top models according to F1-Score.

Method A: Applies the TK operator, decimation, and
cutoff normalization, producing a normalized, positive sig-
nal used for feature extraction (Figure 1b). All feature en-
gineering techniques described above are applied to this
transformed signal, resulting in 29 features designed to
capture key temporal and amplitude-based characteristics.

Method B: Extends Method A by appending the
Squared Signal step, converting each peak into a 0/1 pulse
that preserves timing/width while reducing amplitude sen-
sitivity (Figure 1c). No feature engineering is applied to
this representation.

Table 2 presents the results for the top three model ar-
chitectures evaluated in this work.
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Table 1: Summary of Input Methods for Machine Learning

Method Signal Processing Steps Feature En-
Name gineering
A TK Operator — Decimation —  Yes

Cutoff Normalization
B TK Operator — Decimation No

— Cutoff Normalization —

Squared Signal

Table 2: Classification Results on Persistent AF Targets

Model Params Recall (%) Precision (%) F1 (%)
CNN 272 68.8 38.4 49.2
LSTM 1,461 55.5 40.5 46.8
Logistic 29 85.9 40.2 54.7
Regression

4. Discussion

Despite the simplicity of logistic regression, it achieved
the highest F1-score, demonstrating the utility of tailored
feature extraction and careful regularization in limited data
settings. These findings suggest that interpretable models
with engineered features can match or even exceed more
complex neural architectures when identifying persistent
AF behavior from EGMs. Comparing the two other meth-
ods, the CNN’s relatively higher recall indicates greater
sensitivity to AF patterns, whereas the LSTM’s precision
suggests better discrimination at the cost of recall. Parame-
ter counts remain modest across models (29-1,461), appro-
priate for the limited dataset size and patient-wise splits.
Limitations include label noise from procedural tagging,
class imbalance, and the absence of external validation.

5. Conclusion

This work presented ML approaches for the classifica-
tion of ablation targets using multipolar EGMs. By com-
paring logistic regression with handcrafted features against
CNN and LSTM architectures, we demonstrated that in-
terpretable models, combined with careful preprocessing
and feature engineering, can achieve stronger performance
than DL models despite limited data availability. These
findings support the feasibility of integrating ML-driven
classification into ablation workflows, potentially assisting
physicians in identifying arrhythmogenic regions more ob-
jectively and consistently. Future work will expand the
dataset, incorporate prospective validation, and add ex-
plainability analyses to strengthen clinical interpretability
and adoption.
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